Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

3-Hydroxybenzene 1,2,4-trisphosphate 4 is a new myo-inositol 1,4,5-trisphosphate analogue based on the core structure of benzene 1,2,4-trisphosphate 2 with an additional hydroxyl group at position-3, and is the first noninositol based compound to be a substrate for inositol 1,4,5-trisphosphate 5-phosphatase. In physicochemical studies on 2, when three equivalents of protons were added, the (31)P NMR spectrum displayed monophasic behaviour in which phosphate-1 and phosphate-2 behaved independently in most of the studied pH range. For compound 4, phosphate-2 and phosphate-4 interacted with the 3-OH group, which does not titrate at physiological pH, displaying complex biphasic behaviour which demonstrated co-operativity between these groups. Phosphate-1 and phosphate-2 strongly interacted with each other and phosphate-4 experienced repulsion because of the interaction of the 3-OH group. Benzene 1,2,4-trisphosphate 2 is resistant to inositol 1,4,5-trisphosphate type I 5-phosphatase catalysed dephosphorylation. However, surprisingly, 3-hydroxybenzene 1,2,4-trisphosphate 4 was dephosphorylated by this 5-phosphatase to give the symmetrical 2,3-dihydroxybenzene 1,4-bisphosphate 16. The extra hydroxyl group is shown to form a hydrogen bond with the vicinal phosphate groups at -15 degrees C, and (1)H NMR titration of the ring and hydroxyl protons in 4 shows the OH proton to be strongly stabilized as soon as the phosphate groups are deprotonated. The effect of the phenolic 3-OH group in compound 4 confirms a critical role for the 6-OH group of the natural messenger in the dephosphorylation mechanism that persists even in radically modified analogues.

Original publication

DOI

10.1002/cbic.200600125

Type

Journal article

Journal

Chembiochem

Publication Date

11/2006

Volume

7

Pages

1696 - 1706

Keywords

Chemical Phenomena, Chemistry, Physical, Hydrogen-Ion Concentration, Inositol Polyphosphate 5-Phosphatases, Magnetic Resonance Spectroscopy, Molecular Mimicry, Molecular Structure, Organophosphates, Phosphates, Phosphoric Monoester Hydrolases, Phosphorylation, Polyphosphates, Protons, Rosaniline Dyes, Second Messenger Systems, Substrate Specificity, Titrimetry