Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), an oxidoreductase which has a preferential reductive activity using NADPH as cofactor, converts estrone to estradiol and is expressed in many steroidogenic tissues including breast and in malignant breast cells. As estradiol stimulates the growth and development of hormone-dependent breast cancer, inhibition of the final step of its synthesis is an attractive target for the treatment of this disease. The parallel synthesis of novel focused libraries of 16-substituted estrone derivatives and modified E-ring pyrazole steroids as new potent 17beta-HSD1 inhibitors is described. Substituted 3-O-sulfamoylated estrone derivatives were used as templates and were immobilised on 2-chlorotrityl chloride resin to give resin-bound scaffolds with a multi-detachable linker. Novel focused libraries of 16-substituted estrone derivatives and new modified E-ring steroids were assembled from these immobilised templates using solid-phase organic synthesis and solution-phase methodologies. Among the derivatives synthesised, the most potent 17beta-HSD1 inhibitors were 25 and 26 with IC50 values in T-47D human breast cancer cells of 27 and 165 nm, respectively. Parallel synthesis resulting in a library of C5'-linked amides from the pyrazole E-ring led to the identification of 62 with an IC50 value of 700 nM. These potent inhibitors of 17beta-HSD1 have a 2-ethyl substituent which will decrease their estrogenic potential. Several novel 17beta-HSD1 inhibitors emerged from these libraries and these provide direction for further template exploration in this area. A new efficient diastereoselective synthesis of 25 has also been developed to facilitate supply for in vivo evaluation, and an X-ray crystal structure of this inhibitor is presented.

Original publication

DOI

10.1002/cmdc.200500087

Type

Journal article

Journal

ChemMedChem

Publication Date

04/2006

Volume

1

Pages

464 - 481

Keywords

17-Hydroxysteroid Dehydrogenases, Chromatography, High Pressure Liquid, Enzyme Inhibitors, Estrone, Magnetic Resonance Spectroscopy, Mass Spectrometry, Models, Molecular