Relapse to cocaine seeking in an invertebrate.
Amaning-Kwarteng AO., Asif-Malik A., Pei Y., Canales JJ.
Addiction is characterised by cycles of compulsive drug taking, periods of abstinence and episodes of relapse. The extinction/reinstatement paradigm has been extensively used in rodents to model human relapse and explore underlying mechanisms and therapeutics. However, relapse to drug seeking behaviour has not been previously demonstrated in invertebrates. Here, we used a cocaine conditioned place preference (CPP) paradigm in the flatworm, planarian, followed by extinction and reinstatement of drug seeking. Once baseline preference was established for one of two distinctly textured environments (i.e. compartments with a coarse or smooth surface), planarian received pairings of cocaine (5μM) in the non-preferred, and vehicle in the most preferred, environment, and were tested for conditioning thereafter. Cocaine produced robust CPP, measured as a significant increase in the time spent in the cocaine-paired compartment. Subsequently, planarian underwent extinction training, reverting back to their original preference within three sessions. Brief exposure to cocaine (5μM) or methamphetamine (5μM) reinstated cocaine-seeking behaviour. By contrast, the high affinity dopamine transporter inhibitor, (N-(n-butyl)-3α-[bis (4-fluorophenyl) methoxy]-tropane) (JHW007), which in rodents exhibits a neurochemical and behavioural profile distinct from cocaine, was ineffective. The present findings demonstrate for the first time reinstatement of extinguished cocaine seeking in an invertebrate model and suggest that the long-term adaptations underlying drug conditioning and relapse are highly conserved through evolution.