Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The kinetics of Ca2+ release induced by the second messenger D-myoinositol 1,4,5 trisphosphate (IP3), by the hydrolysis-resistant analogue D-myoinositol 1,4,5 trisphosphorothioate (IPS3), and by micromolar Ca2+ were resolved on a millisecond time scale in the junctional sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The total Ca2+ mobilized by IP3 and IPS3 varied with concentration and with time of exposure. Approximately 5% of the 45Ca2+ passively loaded into the SR was released by 2 microM IPS3 in 150 ms, 10% was released by 10 microM IPS3 in 100 ms, and 20% was released by 50 microM IPS3 in 20 ms. Released 45Ca2+ reached a limiting value of approximately 30% of the original load at a concentration of 10 microM IP3 or 25-50 microM IPS3. Ca(2+)-induced Ca2+ release (CICR) was studied by elevating the extravesicular Ca2+ while maintaining a constant 5-mM intravesicular 45Ca2+. An increase in extravesicular Ca2+ from 7 nM to 10 microM resulted in a release of 55 +/- 7% of the passively loaded 45Ca2+ in 150 ms. CICR was blocked by 5 mM Mg2+ or by 10 microM ruthenium red, but was not blocked by heparin at concentrations as high as 2.5 mg/ml. In contrast, the release produced by IPS3 was not affected by Mg2+ or ruthenium red but was totally inhibited by heparin at concentrations of 2.5 mg/ml or lower. The release produced by 10 microM Ca2+ plus 25 microM IPS3 was similar to that produced by 10 microM Ca2+ alone and suggested that IP3-sensitive channels were present in SR vesicles also containing ruthenium red-sensitive Ca2+ release channels. The junctional SR of rabbit skeletal muscle may thus have two types of intracellular Ca2+ releasing channels displaying fast activation kinetics, namely, IP3-sensitive and Ca(2+)-sensitive channels.

Original publication

DOI

10.1016/S0006-3495(92)81927-6

Type

Journal article

Journal

Biophys J

Publication Date

05/1992

Volume

61

Pages

1184 - 1193

Keywords

Animals, Biophysical Phenomena, Biophysics, Calcium, Calcium Channels, In Vitro Techniques, Inositol 1,4,5-Trisphosphate, Inositol Phosphates, Kinetics, Muscle Contraction, Muscles, Organothiophosphorus Compounds, Rabbits, Receptors, Cholinergic, Ryanodine Receptor Calcium Release Channel, Sarcoplasmic Reticulum