Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice has been used to treat many ailments including cardiovascular disorders in China for long time. Recent studies have shown that the cardiac actions of licorice have been attributed to its active component, glycyrretinic acid (GA). However, its mechanism remains poorly understood. AIM OF THE STUDY: The effects of GA on the cardiac sodium currents (I(Na)), L-type calcium currents (I(Ca,L)) and hyperpolarization-activated inward currents (I(f)) were investigated. MATERIALS AND METHODS: Human isoforms of wild-type and DeltaKPQ-mutant type sodium channels were expressed in Xenopus oocytes, and the resulting currents (peak and late I(Na)) were recorded using a two-microelectrode voltage-clamp technique. A perforated patch clamp technique was employed to record I(Ca,L) and I(f) from isolated rabbit sinoatrial node pacemaker cells. RESULTS: GA inhibited peak I(Na) (33% at 90 microM) and late I(Na) (72% at 90 microM), but caused no significant effects on I(Ca,L) and I(f). CONCLUSION: GA blocked cardiac sodium currents, particularly late I(Na.) Our findings might help to understand the traditional use of licorice in the treatment of cardiovascular disorders, because reduction of sodium currents (particularly late I(Na)) would be expected to provide protection from Na(+)-induced Ca(2+) overload and cell damage.

Original publication




Journal article


J Ethnopharmacol

Publication Date





318 - 323


Animals, Biological Clocks, Calcium, Calcium Channels, L-Type, Glycyrrhetinic Acid, Glycyrrhiza, Heart, Humans, Ion Channel Gating, Membrane Potentials, Oocytes, Patch-Clamp Techniques, Plant Extracts, Rabbits, Sinoatrial Node, Sodium, Sodium Channels, Xenopus laevis