Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.

Original publication




Journal article


J Psychiatr Res

Publication Date





109 - 116


Antipsychotics, Olfactory receptors, Prefrontal cortex, Schizophrenia, Taste receptors, Aged, Aged, 80 and over, Antipsychotic Agents, Case-Control Studies, Chlorpromazine, Chronic Disease, Dopamine Antagonists, Down-Regulation, Humans, Male, Polymerase Chain Reaction, Postmortem Changes, Prefrontal Cortex, Psychiatric Status Rating Scales, Receptors, G-Protein-Coupled, Receptors, Odorant, Schizophrenia