Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Acidic organelles, such as endosomes and lysosomes, store Ca2+ that is released in response to intracellular increases in the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP). In neurons, NAADP and Ca2+ signaling contribute to synaptic plasticity, a process of activity-dependent long-term potentiation (LTP) [or, alternatively, long-term depression (LTD)] of synaptic strength and neuronal transmission that is critical for neuronal function and memory formation. We explored the function of and mechanisms regulating acidic Ca2+ store signaling in murine hippocampal neurons. We found that metabotropic glutamate receptor 1 (mGluR1) was coupled to NAADP signaling that elicited Ca2+ release from acidic stores. In turn, this released Ca2+-mediated mGluR1-dependent LTP by transiently inhibiting SK-type K+ channels, possibly through the activation of protein phosphatase 2A. Genetically removing two-pore channels (TPCs), which are endolysosomal-specific ion channels, switched the polarity of plasticity from LTP to LTD, indicating the importance of specific receptor store coupling and providing mechanistic insight into how mGluR1 can produce both synaptic potentiation and synaptic depression.

Original publication

DOI

10.1126/scisignal.aat9093

Type

Journal article

Journal

Sci Signal

Publication Date

27/11/2018

Volume

11

Keywords

Animals, Calcium, Calcium Channels, Calcium Signaling, Cells, Cultured, Hippocampus, Long-Term Potentiation, Male, Mice, Mice, Knockout, NADP, Pyramidal Cells, Rats, Rats, Wistar, Receptors, Metabotropic Glutamate