Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Egg activation in all animals evidently requires the synthesis of inositol 1,4,5-trisphosphate (InsP(3)) from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by phospholipase C (PLC). Depending on the organism, InsP(3) elicits either calcium oscillations or a single wave, which in turn initiates development. A soluble component in boar sperm that activates mammalian eggs has been suggested to be a PLC isoform. We tested this hypothesis in vitro using egg microsomes of Chaetopterus. Boar sperm factor elicited Ca(2+) release from the microsomes by an InsP(3)-dependent mechanism. The PLC inhibitor U-73122, but not its inactive analog U-73343, blocked the response to sperm factor but not to InsP(3). U-73122 also inhibited the activation of fertilized and parthenogenetic eggs. Chaetopterus sperm also contained a similar activity. These results strongly support the hypothesis that sperm PLCs are ubiquitous mediators of egg activation at fertilization.

Original publication

DOI

10.1016/s0006-291x(03)01120-3

Type

Journal article

Journal

Biochem Biophys Res Commun

Publication Date

18/07/2003

Volume

307

Pages

47 - 51

Keywords

Animals, Calcium, Estrenes, Male, Microsomes, Oocytes, Phosphodiesterase Inhibitors, Polychaeta, Pyrrolidinones, Second Messenger Systems, Spermatozoa, Swine, Type C Phospholipases