Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca(2+) from the acidic Ca(2+) stores of many organisms, including those of the sea urchin egg. We investigated whether the pH within the lumen of these acidic organelles changes in response to stimuli. Fertilization activates the egg by Ca(2+) release dependent upon NAADP, and accordingly, we report that fertilization also alters organellar pH in a spatio-temporally complex manner. Upon sperm fusion, vesicles deep in the egg center slowly acidify, whereas cortical vesicles undergo a rapid alkalinization. The cortical vesicle alkalinization is independent of exocytosis and cytosolic pH but coincides with the NAADP-dependent fertilization Ca(2+) wave. Microinjection of NAADP mimicked the fertilization cortical response, suggesting that it occurred within NAADP-sensitive acidic Ca(2+) stores. Our data show that NAADP and physiological stimuli alter the pH within intracellular organelles and suggest that NAADP signals through pH as well as Ca(2+).

Original publication

DOI

10.1074/jbc.M704630200

Type

Journal article

Journal

J Biol Chem

Publication Date

28/12/2007

Volume

282

Pages

37730 - 37737

Keywords

Animals, Calcium, Calcium Signaling, Cytosol, Exocytosis, Female, Fertilization, Hydrogen-Ion Concentration, Male, NADP, Sea Urchins, Signal Transduction, Sodium, Sperm-Ovum Interactions, Spermatozoa