Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The 5-HT(4) receptor modulates activity of serotonergic neurons and is a new potential target for antidepressant treatment. This microdialysis study evaluated the effect of the 5-HT(4) receptor agonist, RS67333, on extracellular serotonin (5-hydroxytryptamine, 5-HT) and 5-HIAA levels in rat ventral hippocampus during chloral hydrate anaesthesia, and explored the ability of RS67333 to augment the effect of the selective serotonin reuptake inhibitor paroxetine. The effect of RS67333 was examined after acute and subchronic (3 days) administration. Acute RS67333 (1.5mg/kg i.v.) had no effect on extracellular 5-HT or 5-HIAA levels, while acute paroxetine (0.5mg/kg i.v.) increased 5-HT levels by 299+/-16% and decreased 5-HIAA levels by 25+/-4%. Administration of RS67333 80 min after paroxetine caused an additional transient increase in 5-HT levels (to 398+/-52% of baseline). Subchronic RS67333 administration (1.5mg/kg i.p.) increased basal 5-HT levels by 73+/-15% and decreased 5-HIAA levels by 27+/-13%. In conclusion, the 5-HT(4) receptor agonist RS67333 augmented the acute effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, and after 3 days increased basal hippocampal 5-HT levels.

Original publication

DOI

10.1016/j.neulet.2010.04.002

Type

Journal article

Journal

Neurosci Lett

Publication Date

31/05/2010

Volume

476

Pages

58 - 61

Keywords

Aniline Compounds, Animals, Drug Synergism, Extracellular Space, Hippocampus, Hydroxyindoleacetic Acid, Male, Microdialysis, Paroxetine, Piperidines, Rats, Rats, Sprague-Dawley, Serotonin, Serotonin 5-HT4 Receptor Agonists, Serotonin Uptake Inhibitors