Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The singly and doubly hydrated complexes of the α and β anomers of a systematically varied set of monosaccharides, O-phenyl D-gluco-, D-galacto-, L-fuco- and D-xylopyranoside, have been generated in a cold molecular beam and probed through infrared-ultraviolet double resonance ion-dip (IRID) spectroscopy coupled with quantum mechanical calculations. A new 'twist' has been introduced by isotopic substitution, replacing H(2)O by D(2)O to separate the carbohydrate (OH) and hydrate (OD) vibrational signatures and also to relieve spectral congestion. The new spectroscopic and computational results have exposed subtle aspects of the intermolecular interactions which influence the finer details of their preferred structures, including the competing controls exerted by co-operative hydrogen bonding, bi-furcated and OH-π hydrogen bonding, stereoelectronic changes associated with the anomeric effect, and dispersion interactions. They also reassert the operation of general 'working rules' governing conformational change and regioselectivity in both singly and doubly hydrated monosaccharides.

Original publication




Journal article


Phys Chem Chem Phys

Publication Date





18671 - 18678


Carbohydrates, Deuterium Oxide, Fucose, Galactose, Glucose, Hydrogen Bonding, Spectrophotometry, Infrared, Stereoisomerism, Water, Xylose