Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The conformation and structure of phenyl-alpha-l-fucopyranoside (alpha-PhFuc), phenyl-beta-L-fucopyranoside (beta-PhFuc) and their singly hydrated complexes (alpha,beta-PhFuc.H(2)O) isolated in a molecular beam, have been investigated by means of resonant two photon ionization (R2PI) spectroscopy and ultraviolet and infrared ion-dip spectroscopy. Conformational and structural assignments have been based on comparisons between their experimental and computed near IR spectra, calculated using density functional theory (DFT) and their relative energies, determined from ab initio (MP2) calculations. The near IR spectra of "free" and hydrated alpha- and beta-PhFuc, and many other mono- and di-saccharides, provide extremely sensitive probes of hydrogen-bonded interactions which can be finely tuned by small (or large) changes in the molecular conformation. They provide characteristic "signatures" which reflect anomeric, or axial vs. equatorial differences, both revealed through comparisons between alpha/beta-PhFuc and alpha/beta-PhXyl; or similarities, revealed through comparisons between fucose (6-deoxy galactose) and galactose; or binding motifs, for example, "insertion" vs. "addition" structures in hydrated complexes. At the monosaccharide level (the first step in the carbohydrate hierarchy), these trends appear to be general. In contrast to the monohydrates of galactose (beta-PhGal) and glucose (beta-PhGlc), the conformations of alpha- and beta-PhFuc are unaffected by the binding of a single water molecule though changes in the R2PI spectra of multiply hydrated alpha-PhFucW(n) however, may reflect a conformational transformation when n> or = 3.

Original publication

DOI

10.1039/b514301b

Type

Journal article

Journal

Phys Chem Chem Phys

Publication Date

07/01/2006

Volume

8

Pages

129 - 136

Keywords

Carbohydrate Conformation, Fucose, Molecular Structure, Monosaccharides, Pyrans, Spectrum Analysis, Water