Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT-PCR and enzyme-liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin-1beta (IL-1beta) injection resulted in up-regulated chemokine expression in both brain and spinal cord. CINC-3 mRNA was elevated above CINC-1 and CINC-2alpha, with expression levels for each higher in spinal cord than in brain. By ELISA, IL-1beta induced greater CINC-1 and CINC-2alpha expression compared to CINC-3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC-2alpha protein were observed in response to IL-1beta injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC-2beta mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments.


Journal article


J Neurochem

Publication Date





432 - 441


Age Factors, Animals, Brain, Chemokine CXCL1, Chemokines, Chemokines, CXC, Chemotactic Factors, Corpus Striatum, Intercellular Signaling Peptides and Proteins, Interleukin-1, Male, Neutrophil Infiltration, RNA, Messenger, Rats, Spinal Cord, Up-Regulation