Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

n-3 polyunsaturated fatty acids (PUFAs) can prevent life-threatening arrhythmias but the mechanisms responsible have not been established. There is strong evidence that part of the antiarrhythmic action of PUFAs is mediated through inhibition of the Ca(2+)-release mechanism of the sarcoplasmic reticulum (SR). It has also been shown that PUFAs activate protein kinase A (PKA) and produce effects in the cardiac cell similar to beta-adrenergic stimulation. We have investigated whether the inhibitory effect of PUFAs on the Ca(2+)-release mechanism is caused by direct inhibition of the SR Ca(2+)-release channel/ryanodine receptor (RyR) or requires activation of PKA. Experiments in intact cells under voltage-clamp show that the n-3 PUFA eicosapentaenoic acid (EPA) is able to reduce the frequency of spontaneous waves of Ca(2+)-release while increasing SR Ca(2+) content even when PKA activity is inhibited with H-89. This suggests that the EPA-induced inhibition of SR Ca(2+)-release is not dependent on activation of PKA. Consistent with this, single-channel studies demonstrate that EPA (10-100 microM), but not saturated fatty acids, reduce the open probability (Po) of the cardiac RyR incorporated into phospholipid bilayers. EPA also inhibited the binding of [3H]ryanodine to isolated heavy SR. Our results indicate that direct inhibition of RyR channel gating by PUFAs play an important role in the overall antiarrhythmic properties of these compounds.

Type

Journal article

Journal

Cardiovasc Res

Publication Date

01/11/2003

Volume

60

Pages

337 - 346

Keywords

Animals, Anti-Arrhythmia Agents, Arrhythmias, Cardiac, Calcium, Cyclic AMP-Dependent Protein Kinases, Depression, Chemical, Eicosapentaenoic Acid, Isoquinolines, Patch-Clamp Techniques, Rats, Rats, Inbred Strains, Ryanodine Receptor Calcium Release Channel, Sarcoplasmic Reticulum, Sheep, Sulfonamides