Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIM: RyR2 mutations are associated with catecholaminergic polymorphic tachycardia, a condition characterized by ventricular and atrial arrhythmias. The present experiments investigate the atrial electrophysiology of homozygotic murine RyR2-P2328S (RyR2(S/S)) hearts for ectopic triggering events and for conduction abnormalities that might provide a re-entrant substrate. METHODS: Electrocardiograph recordings were made from regularly stimulated RyR2(S/S) and wild type (WT) hearts, perfused using a novel modified Langendorff preparation. This permitted the simultaneous use of either floating intracellular microelectrodes to measure action potential (AP) parameters, or a multielectrode array to measure epicardial conduction velocity (CV). RESULTS: RyR2(S/S) showed frequent sustained tachyarrhythmias, delayed afterdepolarizations and ectopic APs, increased interatrial conduction delays, reduced epicardial CVs and reduced maximum rates of AP depolarization ((dV/dt)(max)), despite similar effective refractory periods, AP durations and AP amplitudes. Effective interatrial CVs and (dV/dt)(max) values of APs following ectopic (S2) stimulation were lower than those of APs following regular stimulation and decreased with shortening S1S2 intervals. However, although RyR2(S/S) atria showed arrhythmias over a wider range of S1S2 intervals, the interatrial CV and (dV/dt)(max) of S2 APs provoking such arrhythmias were similar in RyR2(S/S) and WT. CONCLUSIONS: These results suggest that abnormal intracellular Ca(2+) homoeostasis produces both arrhythmic triggers and a slow-conducting arrhythmic substrate in RyR2(S/S) atria. A similar mechanism might also contribute to arrhythmogenesis in other conditions, associated with diastolic Ca(2+) release, such as atrial fibrillation.

Original publication




Journal article


Acta Physiol (Oxf)

Publication Date





308 - 323


Action Potentials, Animals, Arrhythmias, Cardiac, Calcium, Electrocardiography, Heart Atria, Mice, Mice, Mutant Strains, Organ Culture Techniques, Ryanodine Receptor Calcium Release Channel