Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Site-directed (gene) mutagenesis has been the most useful method available for the conversion of one amino acid residue of a given protein into another. Until relatively recently, this strategy was limited to the twenty standard amino acids. The ongoing maturation of stop codon suppression and related technologies for unnatural amino acid incorporation has greatly expanded access to nonstandard amino acids by expanding the scope of the translational apparatus. However, the necessity for translation of genetic changes restricts the diversity of residues that may be incorporated. Herein we highlight an alternative approach, termed post-expression mutagenesis, which operates at the level of the very functional biomolecules themselves. Using the lens of retrosynthesis, we highlight prospects for new strategies in protein modification, alteration, and construction which will enable protein science to move beyond the constraints of the "translational filter" and lead to a true synthetic biology.

Original publication




Journal article


Angew Chem Int Ed Engl

Publication Date





5896 - 5903


amino acids, mutagenesis, peptides, protein modifications, synthetic biology, Amides, Amino Acids, Carbon, Mutagenesis, Protein Processing, Post-Translational, Proteins