Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two nicotinamide adenine dinucleotide (NAD(+)) analogues modified at the 6 position of the purine ring were synthesized, and their substrate properties toward Aplysia californica ADP-ribosyl cyclase were investigated. 6-N-Methyl NAD(+) (6-N-methyl nicotinamide adenosine 5'-dinucleotide 10) hydrolyzes to give the linear 6-N-methyl ADPR (adenosine 5'-diphosphoribose, 11), whereas 6-thio NHD(+) (nicotinamide 6-mercaptopurine 5'-dinucleotide, 17) generates a cyclic dinucleotide. Surprisingly, NMR correlation spectra confirm this compound to be the N1 cyclic product 6-thio N1-cIDPR (6-thio cyclic inosine 5'-diphosphoribose, 3), although the corresponding 6-oxo analogue is well-known to cyclize at N7. In Jurkat T cells, unlike the parent cyclic inosine 5'-diphosphoribose N1-cIDPR 2, 6-thio N1-cIDPR antagonizes both cADPR- and N1-cIDPR-induced Ca(2+) release but possesses weak agonist activity at higher concentration. 3 is thus identified as the first C-6 modified cADPR (cyclic adenosine 5'-diphosphoribose) analogue antagonist; it represents the first example of a fluorescent N1-cyclized cADPR analogue and is a new pharmacological tool for intervention in the cADPR pathway of cellular signaling.

Original publication

DOI

10.1021/jm201127y

Type

Journal article

Journal

J Med Chem

Publication Date

23/02/2012

Volume

55

Pages

1478 - 1489

Keywords

ADP-ribosyl Cyclase, Animals, Aplysia, Calcium, Cyclic ADP-Ribose, Cyclization, Humans, Hydrogen-Ion Concentration, Jurkat Cells, Models, Molecular, Molecular Conformation, Permeability, Structure-Activity Relationship, T-Lymphocytes, Thioinosine