Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The development of potent steroid sulfatase inhibitors is an important new therapeutic strategy for the treatment of postmenopausal women with breast cancer. A series of tricyclic coumarin sulfamates were synthesized, and their inhibitory properties were examined in vitro and in vivo. In a placental microsomal assay system, 667 COUMATE emerged as the most potent inhibitor with an IC50 of 8 nM. Administration of a single dose (10 mg/kg, p.o.) of 667 COUMATE inhibited rat liver estrone sulfatase activity by 93%. 667 COUMATE was devoid of estrogenicity, as indicated by its failure to stimulate the growth of uteri in ovariectomized rats. In vivo, estrone sulfate-stimulated growth of uteri in ovariectomized rats was inhibited by 667 COUMATE. Using the nitrosomethylurea-induced mammary tumor model, we found that 667 COUMATE caused regression of estrone sulfate-stimulated tumor growth in a dose-dependent manner. The identification of 667 COUMATE as a potent steroid sulfatase inhibitor will enable the therapeutic potential of this type of therapy to be evaluated.

Type

Journal article

Journal

Cancer Res

Publication Date

01/07/2000

Volume

60

Pages

3394 - 3396

Keywords

Animals, Antineoplastic Agents, Cell Division, Coumarins, Estrone, Female, Humans, Liver, Mammary Neoplasms, Experimental, Methylnitrosourea, Ovariectomy, Rats, Rats, Inbred Strains, Structure-Activity Relationship, Sulfatases, Sulfonamides, Sulfonic Acids, Time Factors, Uterus