Inhibition of deoxyglucose uptake in MCF-7 breast cancer cells by 2-methoxyestrone and 2-methoxyestrone-3-O-sulfamate.
Singh A., Purohit A., Hejaz HA., Potter BV., Reed MJ.
Most cancer cells are dependent on glucose uptake to fulfil their energy requirements. In the present investigation we have examined the ability of 2-methoxyestrone (2-MeOE1), 2-methoxyestradiol (2-MeOE2), 2-methoxyestrone-3-O-sulfamate (2-MeOEMATE), and a number of related compounds, to inhibit 2-deoxy-D-[1-(3)H]-glucose uptake in MCF-7 breast cancer cells. Glucose uptake was shown to be linear with respect to cell number and time over a 5-35min period. 2-MeOE2, 2-MeOE1 and 2-MeOEMATE inhibited glucose uptake by 25-49% at 10 microM. 2-Hydroxyestradiol and estrone sulfate had little effect on glucose uptake, whereas estrone glucuronide inhibited uptake by 29%. There is evidence that 2-methoxyestrogens may exert an anti-mitotic effect on cells by stabilizing microtubules in a similar manner to that of paclitaxel. We therefore examined the effect of exposing cells to 2-MeOEMATE or paclitaxel for 24 h on basal or insulin stimulated glucose uptake. Using these conditions, 2-MeOEMATE and paclitaxel inhibited basal glucose uptake by 50 and 22%, respectively, and insulin stimulated uptake by 36 and 51%, respectively. The development of drugs that can inhibit glucose uptake could have therapeutic potential for the treatment of breast cancer.