Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The expression of metallothionein (MT) and heat shock protein gene families was investigated in normal and in HeLa-derived cadmium-resistant cells, named H454. In the absence of amplification of MT genes H454 cells accumulated elevated concentrations of cadmium ions and synthesized higher levels of MT proteins than unselected HeLa cells. Northern blot analyses revealed higher levels of MT mRNAs in the resistant cells than in wild-type cells after Cd2+ and Zn2+ exposure. Evaluation of the cytotoxic potential of the different metals confirmed the high resistance to cadmium of the H454 cells. Two proteins of the heat shock family, hsp70 and GRP78, were synthesized in Cd(2+)-exposed H454 cells at levels comparable to the ones present in Cd(2+)-treated normal cells. Northern blot analyses of the mRNA levels corresponding to these proteins revealed elevated expression of both hsp70 and GRP78 mRNAs in H454 cells upon exposure to cadmium ions and no response to zinc induction. These data suggest the existence in the H454 cells of a cadmium-specific pathway of regulation of MT and heat shock genes.

Original publication

DOI

10.1006/excr.1996.0314

Type

Journal article

Journal

Exp Cell Res

Publication Date

01/11/1996

Volume

228

Pages

173 - 180

Keywords

Cadmium, Carrier Proteins, Cell Survival, Clone Cells, Drug Resistance, Gene Expression Regulation, HSP70 Heat-Shock Proteins, HeLa Cells, Heat-Shock Proteins, Humans, Metallothionein, Molecular Chaperones, RNA, Messenger, Transcription, Genetic, Zinc