Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Schizophrenia constitutes a complex disease. Negative and cognitive symptoms are enduring and debilitating components of the disorder, highly associated to disability and burden. Disrupted neurotransmission circuits in dorsolateral prefrontal cortex (DLPFC) have been related to these symptoms. To identify candidates altered in schizophrenia, we performed a pilot proteomic analysis on postmortem human DLPFC tissue from patients with schizophrenia (n=4) and control (n=4) subjects in a pool design using differential isotope peptide labelling followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). We quantified 1315 proteins with two or more unique peptides, 116 of which showed altered changes. Of these altered proteins, we selected four with potential roles on cell signaling, neuronal development and synapse functioning for further validation: casein kinase I isoform epsilon (CSNK1E), fatty acid-binding protein 4 (FABP4), neurofilament triplet H protein (NEFH), and retinal dehydrogenase 1 (ALDH1A1). Immunoblot validation confirmed our proteomic findings of these proteins being decreased in abundance in the schizophrenia samples. Additionally, we conducted immunoblot validation of these candidates on an independent sample cohort comprising 23 patients with chronic schizophrenia and 23 matched controls. In this second cohort, CSNK1E, FABP4 and NEFH were reduced in the schizophrenia group while ALDH1A1 did not significantly change. This study provides evidence indicating these proteins are decreased in schizophrenia: CSNK1E, involved in circadian molecular clock signaling, FABP4 with possible implication in synapse functioning, and NEFH, important for cytoarchitecture organization. Hence, these findings suggest the possible implication of these proteins in the cognitive and/or negative symptoms in schizophrenia.

Original publication




Journal article


Schizophr Res

Publication Date





88 - 97


CSNK1E, FABP4, NEFH, Postmortem dorsolateral prefrontal cortex, Proteomics, Schizophrenia, Adult, Aged, Aldehyde Dehydrogenase, Casein Kinase Iepsilon, Chromatography, Liquid, Cohort Studies, Fatty Acid-Binding Proteins, Female, Humans, Immunoblotting, Male, Neurofilament Proteins, Pilot Projects, Prefrontal Cortex, Proteome, Proteomics, Schizophrenia, Tandem Mass Spectrometry