Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The electrophysiological properties of sinoatrial (SA) node pacemaker cells vary in different regions of the node. In this study, we have investigated variation of the 4-aminopyridine (4-AP)-sensitive current as a function of the size (as measured by the cell capacitance) of SA node cells to elucidate the ionic mechanisms. The 10 mM 4-AP-sensitive current recorded from rabbit SA node cells was composed of transient and sustained components (Itrans and Isus, respectively). The activation and inactivation properties [activation: membrane potential at which conductance is half-maximally activated (Vh) = 19.3 mV, slope factor (k) = 15.0 mV; inactivation: Vh = -31.5 mV, k = 7.2 mV] as well as the density of Itrans (9.0 pA/pF on average at +50 mV) were independent of cell capacitance. In contrast, the density of Isus (0.97 pA/pF on average at +50 mV) was greater in larger cells, giving rise to a significant correlation with cell capacitance. The greater density of Isus in larger cells (presumably from the periphery) can explain the shorter action potential in the periphery of the SA node compared with that in the center. Thus variation of the 4-AP-sensitive current may be involved in regional differences in repolarization within the SA node.

Original publication




Journal article


Am J Physiol

Publication Date





H1295 - H1304


4-Aminopyridine, Animals, Cell Size, Electric Conductivity, Electrophysiology, Kinetics, Patch-Clamp Techniques, Rabbits, Sinoatrial Node