Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A collaboration between the Russell group (Chemistry and Pharmacology) and the Davies group (Physiology, Anatomy and Genetics) has identified, via a chemical proteomics and phenotypic profiling strategy, the arylhydrocarbon receptor (AhR) as the molecular target of ezutromid, the utrophin modulator that recently completed a Phase 2 clinical trial in Duchenne muscular dystrophy patients.

Research results have been published in Angewandte Chemie.

Ezutromid (formerly SMT C1100) was identified through phenotypic screening approach, and developed as a first-in-class utrophin modulator for the treatment of the severe muscle wasting disease Duchenne muscular dystrophy (DMD). The clinical trial showed promising efficacy and evidence of target engagement after 24 weeks of treatment, but these effects were not seen after the full 48 weeks of the trial. Without knowledge of the mechanism of action of ezutromid, it was difficult to rationalise the lack of sustained clinical efficacy, and development of ezutromid was discontinued.

In this work, we demonstrate through a series of target identification and validation studies that ezutromid binds to AhR with high affinity, and antagonism of AhR by ezutromid leads to utrophin upregulation, thereby confirming AhR as a viable target for utrophin functional replacement therapies. This work paves the way for the first target-based disease modifying drug discovery program in DMD.

See https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201912392

Similar stories

Emptage group successful with £1m MRC-AMED award

Congratulations to the group of Professor Nigel Emptage who have been awarded an MRC-AMED grant, worth £1m, in conjuction with the University of Tokyo and the RIKEN Center for Brain Science

Burton group wins image competition at Oxford BHF CRE Annual Symposium

This image of a blood clot composed of erythrocytes trapped by long fibrous chains of fibrin was judged the winner of the image competition at the BHF CRE 2022 Symposiium, held in December. In this image we can see false coloured erythrocytes (classic biconcave appearance around 5-10 µm in diameter) wrapped by fibrin network.

Understanding the brain at Didcot Girls School Science Club

A group of researchers and students led by Dr Tim Viney visited Didcot Girls School to run a ‘hands on’ event about the brain at the school’s Science Club.

Raised intracellular chloride levels underlie the effects of tiredness in cortex

The feeling of being tired is familiar to everyone. As we know from our own experience, an extended period of wakefulness results in a decline in our performance levels, and the desire to sleep becomes almost irresistible. When you then fall asleep, your sleep is deeper and more consolidated than usual. And yet after just one night of uninterrupted sleep, you can feel refreshed and “back to normal”!

Consequences of Tau pathology on hippocampal pyramidal neurons and network activity in ageing mice

Pathological hyperphosphorylated forms of the microtubule-associated binding protein Tau (pTau) are commonly found in people with neurodegenerative diseases, including Alzheimer’s disease, Corticobasal degeneration, and Progressive supranuclear palsy.